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S U M M A R Y  
Regular perturbation methods are employed to investigate the problem of laminar film condensation on a rotating 
disk in a large volume of quiescent vapour for small and large rates of cooling at the disk surface. The flow and thermal 
fields are represented by the u  Karman similar solution. Exact numerical solutions of the similar equations are 
obtained for the case of steam-water condensation and compared with those derived analytically. 

1. Introduction 

The work of Nusselt [1] on laminar film condensation on to a vertical flat plate has initiated 
many theoretical investigations into gravity driven and forced flows. Thus the boundary layer 
approximation was applied to Nusselt's problem by Sparrow and Gregg [2] and Koh, Sparrow 
and Hartnett [3] so as to include the effects of vapour drag and inertia and convective effects 
in the condensate flow. In [4] Cess formulated, in terms of the Blasius similar variables, the 
problem of forced vapour flow past a semi-infinite flat plate. The effect of variation of the 
physical properties of condensate with temperature in Nusselt's problem has been considered 
by Poots and Miles [51. In all of the above theoretical investigations the essential mathematical 
difficulty lies in the solution of a system of nonlinear partial differential equations in two 
domains with an unknown boundary. This somewhat intractable numerical problem can be 
avoided on using perturbation methods. For example regular perturbation methods are shown 
by Beckett and Poots [6] to yield reliable quantitative results for plane two-dimensional 
forced flows even when the vapour pressure gradient is adverse. 

The simplicity of the Nusselt model for laminar film condensation motivated Sparrow and 
Gregg [7] to investigate the case of a rotating disk in a large volume of quiescent vapour. They 
assumed a constant property condensate whose flow and thermal fields were represented by 
the well known Von Karman similar solution. In particular they neglect the effect of vapour 
drag on assuming a stress-free condensate-vaponr interface. No subsequent results are known 
to have been published on this topic and although a recent contribution by Dhir and Lienhard 
[8] discusses the disk problem no new information is given. 

Because of this lack of quantitative and qualitative theoretical information on condensation 
in rotating flows the case of a rotating disk is re-examined. The regular perturbation procedures 
developed in [6] for small and large rates of cooling at the disk surface are employed. Exact 
numerical solutions of the relevant Von Karman similar flow field are obtained for the case 
of steam-water condensation. This information is then employed to assess the accuracy of the 
analytical predictions. 

The flow configuration is as follows : An infinite disk at temperature T,~ rotates with angular 
velocity ~ in a large volume of quiescent pure vapour at saturation temperature T~ > T,~. A 
condensate film is formed on the disk and a steady state axially symmetric flow exists in which 
both vapour and condensate are swept radially outwards in spiral paths away from the axis of 
rotation. The steady renewal of condensate maintains the interface in a fixed position. The 
actual location being dependent on the scale of rotation and the rate of cooling at the disk 
surface. 
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Liquid Phase: In the liquid phase cylindrical polar coordinates (r, qS, z) are used, r being the 
distance measured from the axis of rotation, ~b the polar angle measured in the direction of 
rotation and z the normal distance from the disk. The velocity field has components (u, v, w) 
in the (r, qS, z)-directions and the temperature field is denoted by T. 

The Von Karman similar solution, see Ostrach and Thorton [-9], is given in the form: 

r - r , ~  
r = \ p O / s  ' \pO/~ ' ' ' 

\ P / s  e l ( Z ) ,  v = Ro(Z) ,  w= . 
\ P / s  

Here p denotes the viscosity, p the density, K the thermal conductivity, cp the specific heat at 
constant pressure and the subscript s the condition at saturation temperature T~. Except 
for the R-dependence in the radial and angular velocity components it is observed that the 
velocity and thermal fields are functions of Z. Consequently the thickness of the condensate 
layer is constant and independent of R; the liquid-vapour interface is located at 

Z = A = const. (2) 

Further simplification is achieved on employing the Howarth-Dorodnitsyn variable 

x = l l Z P d z ,  e = f A P d z , "  (3) 
~b Jo ps o P~ 

moreover the inflow velocity function H(Z)  is written as follows 

P~ h(x) (4) H(z) = p . 

The range of integration is now 0_< x __% 1. The Navier-Stokes equations expressing conservation 
of mass, momentum and thermal energy become the ordinary differential equations: 

{ PP f , ~ ' =  ~ ,2( f2_o2)+~,h f ,  h ' + 2 W =  O, \(~p)~ } 

(5) 

) 
where the dash denotes differentiation with respect to x. The equations are supplemented with 
variable fluid property relations 

p = p ( T ) ,  Cp = Cp(T), [2 = p(T)  a n d  K = K ( T ) .  (6) 

It is assumed that this condensate data is available from experiment (see [10]). 

Vapour Phase: For convenience all vapour quantities are denoted by a star. For example 
(u*, v*, w*) denotes the velocity components in the (r, q~, z*)-directions, where z* now measures 
the normal distance from the liquid-vapour interface. The isothermal flow of the vapour at 
saturation temperature T~ is now given by the similar solution: 

z* = x*,  p*=  

\ p* L \ o L 

\ p,  h*(x*). 

(7) 
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The velocity functions J*,  g* and h* satisfy the differential equations" 

h * ' + 2 f * = 0 ,  f * " = f * 2 - g * Z + h * J ' * ' ,  g * ' = 2 f * g * + h * g * ' .  (8) 

Boundary conditions: At the surface of the disk the usual conditions of no slip and no tempera- 
ture jump are required, i.e. 

u = 0 ,  v = r g 2 ,  w = 0 ,  T=T,~.  (9) 

As the disk is rotating in a large volume of quiescent vapour then 

u*--,0, v*--,0 as z * ~ .  (10) 

It is also necessary to match the condensate and vapour flows at the interface located at 
x =  1 or x*=  0. The necessary conditions are: 

(i) Continuity in mass flow, yielding 

p~w = p ' w *  ; (11) 

(ii) Continuity in the tangential components of velocity, yielding 

u = u * ,  v = v *  ," (12) 

(iii) Continuity in shear stress, yielding 

"-" U~"**, "-" ~z**, "-" ~z**, (13) Z~) = Z FZ = ZZ = Z 

where the stresses are given by 

rz = t ~ + , = l~ Oz , zz = - p + 21~ 3z 

(iv) Finally at the interface Z = A 

T =  T~ and ~ \~-~/~ = - p * w * h • o ,  (14) 

where h f o is the latent heat of condensation. 
In terms of the similar variables the boundary conditions for determining f g, h, 0 and 

f* ,  g*, h* and the unknown dimensionless thickness q) are'  

At x = 0 :  J ' = h = O , g = l ,  0 = 0 ;  (15) 

At x = l  and x * = 0 "  

h*(0) = 2h(1), f * ( 0 ) = f ( 1 ) ,  g*(0) = g(1), ~ J * ' ( 0 ) =  2J" (1) , /  
(16) J 

4~g*'(0) = 2g'(1), 0(1)= 1 and X0'(1)= - (bh(1) .  

As x* ~ o o "  J ' * ~ O ,  g*---,O. (17) 

Here 2=(v /v*)} (p /p*)~ ,  Z=CpAT/P~hfo ,  the Prandtl number P=Cpl~/K,  and v = # / p  is 
the kinematic viscosity. 

The quantities of practical interest are as follows. 

Torque and Moment  CoeJficient" The torque M on one side of a disk of radius R 0 is 

m = - 2 n  rZ'7~dr, z4) = Iz~ 
0 z=0  

The dimensionless moment coefficient CM is 

M/~ps(2 R o - 2 n R e  -~ 
1 2 5 =  g ' (0 )  

where the Reynolds number Re = p~f2RZo/l~. 

(18) 

Journal  o f  Engineering Math . ,  Vol. 7 (1973) 63-73 



66 P. M. Beckett, P. C. Hudson, G. Poots 

Nusselt Number: This is given by 

(ST)  /AT=Re~(pK)wO'(O)  (19) 
N u = R  0 ~ z  ~=0 (pK)~ 4) 

Condensate Film Thickness : If fi is the actual condensate thickness then from (1)-(3) it follows 

f c5 _ R e -  ~ ~ P~ dx. (20) 
Ro o P 

The system of equations (5) and (6) for the condensate flow and (8) for the vapour flow subject 
to the boundary conditions (15)-(17) can be solved by numerical methods. For  example a 
matrix interpretative scheme employing quasi-linearisation proved to be satisfactory. 

In Table 1 some numerical results are listed for steam-water condensation for pure steam 
at saturation temperature 100~ and at atmospheric pressure, the disk temperatures being 
T~=0(20) 80~ and 90~ In Figures 1 and 2 representative velocity profiles are displayed 
for T,~=0~ and 90~ 

To estimate the magnitude of the errors introduced on neglecting the effects of vapour drag, 
as in the work of Sparrow and Gregg [7], a stress-free interface is assumed. Then it is necessary 
to solve the condensate equations (5) and (6) subject to the conditions (15) at x = 0 ,  and to 
replace (16) at x = 1 with the following: 

J"(1) = g'(1) ~ 0 ,  0(1) = 1 and Z0'(1) = -q~h(1).  (21) 

TABLE 1 

Full numerical solution Jbr steam-water condensation 

7; ~ 0' (0) J' (0) g' (0) ~ CM Re~/2~r Nu Re-~ 

0 1.156 0.0994 -0.0285 0.847 0.223 1.150 
20 1.085 0.140 -0.0417 0.753 0.206 1.317 
40 1.043 0.167 -0.0496 0.661 0.181 1.518 
60 1.017 0.175 -0.0479 0.565 0.121 1.785 
80 t.006 0.151 -0.0328 0.449 0.0835 2.245 
90 1,005 0.117 -0.0189 0,367 0.0581 2.746 

04; 

t lOv 
73 

f I 1 I ~ I 

0-2 0-,~ 0 "6  (]'O 1-0 0-2 O.t. 
0.0 �9 

x x * 

Figure 1. Dimensionless radial velocity profiles for T,~=0 and 90~ 
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Tv: O~ 

0 2  

\ 

0-4 0.6 0.8 70  0 '2  p 0.~ 
~' 0"0 " 

x x *  

Figure 2. Dimensionless angular velocity for Tw=0 and 90~ 

TABLE 2 

Numerical solution with stress-jree interJhce 

T,~ ~ 0'(0) f ' (0)  9'(0) 8' Cza Re~/2rc 

0 1.155 0.100 -0.0147 0.828 0.118 
20 1.085 0.142 -0.0216 0.737 0.109 
40 1.043 0.169 -0.0255 0.639 0.0950 
60 1.017 0.177 -0.0245 0.556 0.0628 
80 1.006 0.152 -0.0166 0.445 0.0478 
90 1.005 0.117 -0.0095 0.365 0.0294 

The results for steam-water condensation are given in Table 2. When compared with those 
listed in Table 1 excellent agreement can be noted for the characteristics ~, 0'(0) and f'(0) 
but, as might be expected, 9'(0) is in error by 50 per cent. Clearly the omission of interracial 
shear does not lead to errors in condensate thickness or the surface heat transfer coefficient but 
gives serious discrepancies in the moment coefficient. 

2. Perturbation methods of solution 

As shown by Beckett and Poots [6] there are two limiting forms for the condensation process. 
These correspond to the physical situations of small or large rates of cooling at the disk surface. 
In the following uniformly valid expansions are derived for these limiting conditions. The per- 
turbation methods depend on the dimensionless groups )~ = cpA T/Pshs~ and 2= (v/v*)~(p/p*)s. 
For most vapours employed in engineering practice X ~ 1 and 2 >> 1 ; for example in the case 
of steam-water condensation 2= 191 and Z< ~ for 0__< T,~ < 100~ 

2.1. The Thin Film Approximation 

In the limit as AT=(T~-Tw)~0 or Z->0 the dimensionless condensate thickness ~ 0  and 
the vapour velocity functions f*,  9* and h* are those pertaining to the single phase vapour 
flow on a uniformly rotating impermeable disk. Moreover in the limiting process )0-+0 the 
condensate behaves as a constant property fluid; for example/A~-gs~Z as )~0 .  
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The governing equations (5) for the condensate simplify to the following 

h', + 2~bf= 0,  f " =  ~2(f2-g2)q-cl)hf' ,} (21) 
g'  = 2eb2j'9+cI'hg ' , O' = ebPshO' 

which coupled with the vapour phase equations (8), are to be solved subject to the boundary 
conditions (15)-(17). 

To satisfy the limiting requirements as Z ~ 0  it is necessary to expand the velocity and thermal 
fields in terms of the parameter e=Z }. For dearly if ~0=O(z =) and h=  O(Z") then from the 
equation of continuity J =  O(Z "-~) and from the stress conditions and heat balance at the 
interface it follows that 2 m -  n = 0 and m + n = 1, respectively. Thus ~b ~ Z'*, h ~ Z } and J '~  Z ~ 
as Z ~ 0 .  

The regular perturbation expansions* are: 

Condensate: + = ~e"qb,,, 0 =  ~ e " O , ( x ) ,  f :  ~ e , f . ( x ) ,  

g = 

Vapour: f *  = 

1 o 1 } (22) 

e"O,(X), h = ~ e " h , ( x ) ;  
0 2 

i i . **  i e"f,*(x*), g* = e g,,(x ) ,  h* = e"h*(x*), (23) 
0 0 0 

The perturbation equations are as follows: 

Zeroth-order flow: 

h~'+ZJo* = 0 J0*" =J0 *z "*2+h*r* '  ' ,~*+h* �9 , - ~ o  oao , ga " =  2Jo*uo og* '  , (24) 
it t ~-- 

J;" = g; = 00 = 0,  h2 -2q51Jl �9 (25) 

the boundary conditions are 

f l ( 0 ) = h z ( 0 ) = 0 ,  {7o(0)=1, J~*(oo)=g~(oo)=0,  0o(0)=0 ,  0o(1)=1 ,  
(26) 

. / .  

go(l) = g~(0), Jo*(0) = 0, h*(0) = 0, f~(1) = ~jo* ' (0) ,  g{~(1) = 0, 0{~(1) = -qS,h2(l ) . 

The vapour and condensate equations are now uncoupled. The solution to the system (24) and 
(26) is known since it governs the Von Karman similar solution for the flow due to an imperme- 
able rotating disk. The characteristics, given in ref. [9] are 

Jo*'(0) = A~ = 0.510, g*'(0) = B~ = -0 .616 ,  h*(oo) = -0 .886 .  (27) 

The solution of (25) and (26) yields 

0 o(x) = x ,  go(X) = 1,  J~ (x) = A ,  ~a, x /2 ,  h 2 (x) = - ~o 2 A 1 - ~ ,  01 = \ A , J  " 

Thus the zeroth order condensate flowis activated by the r~*stress but is in a state of rigid body 
rotation. 

First-order flow" For the vapour it is necessary to solve a linear system of equations. Set 

h* = H i ( x *  ) ,  j ~  = ( ~ - )  F*(x*) ,  O* = G;(x*) ,  (29) 

where H~, F~ and G* satisfy 

* As previously noted/~,~-p~ = O (~:-~) and the assumption of a constant property model is consistent provided third 
order terms are not required. 
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H? '+  2F1" = 0, F*" = 2Jo* F? - 29~ G~; + h~d F?' + H*fo*' '1 (30) 
hoG1 +H1 go ~I~*"-9r ~Jo * *' * *' 

subject to the boundary conditions 

F*(O) = 1, G*(O) = B1/A 1, H*(0) = 0, F~'(~) = 0, G*(oo) = 0 .  (31) 

The solution of (30) and (31) is clearly F * -  c*'/A - Jo  / ~, G~=g~'/A~ and H~=h*' /A 1. This yields 
the characteristics 

F * ' ( O ) = A z = - I / A 1 ,  G*'(0)=B 2 = 0 ,  (32) 

which are required to determine the condensate flow. This is now given by the expressions 

, - - - ) - ~ -  x ,  (P2 = \ A l l  + , 

fz(x) = ~b 2 ( x -  ~ ) +  ~{A 2 ( ~ ) ~ +  Alq~2}, (33) 

h 3 ( x ) = c ~ 3 ( 3 3 - - x  2) + c'~lx2{A2 (A-1)~ + 2A1q~2} 

On the basis of the thin film approximation formulae are now available for the flow charac- 
teristics CM, Nu and c~ as previously defined. The first two terms in the expansion yield: 

= ~ ~ 2 Z ~ 22 , ] 

\ A , /  "' ] (34) 

0 ' ( 0 / - -  . . . .  
\ A l l  

It is clear from (34) that the convergence rate is poor. For in the case of steam-water conden- 
sation, for which 2= 191, and Z= 1.07 • 10 -3 AT/~  the ratio of the first order correction 
in ~ to the zeroth-order contribution yields the inequality A T <  10 -5 ~ 

Thus the thin film approximation, although being a uniformly valid expansion in the limit 
X-*0, is of little practical value in the study of condensation in rotating flows. It should be 
emphasized, however, that such flows have a general feature namely that in some part of the 
flow field vapour is pulled towards the solid rotating surface. Thus even for small A T the 
condensation rate is probably significant. In the next section the concept of a suction boundary 
layer at the interface is utilized to develop a perturbation analysis for large condensation rates. 

2.2. The Thick Film Approximation 

For A T/T~=O(1) the rate of condensation will be appreciable. The liquid-vapour interface 
is considered to be a fictitious rotating disk with angular velocity less than f2. The condensate 
is then in a state of near rigid body rotation and the vapour flow is controlled by strong suction 
at the fictitious disk (or interface). 

Since 2 is large introduce new suction boundary layer variables for the vapour flow, namely 

x *  = 2 x * ,  h* = 2H*(x*) ,  f *  = 22F*(x*), g* = 22G*(x*). (35) 

On substitution of (35) into (8) suitable asymptotic expansions for H~, F* and G* are (see 
Stuart [11]): 

H * =  - S *  + H_~(x*)+ .... F* = ~-~F*(x*)+ . . . .  G* = • G * ( x * ) + . . . ,  (36) 

where the unknown suction velocity at the interface is denoted by S*. Due to the far flow field 
conditions it follows that 
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F* =B* exp(-S*X*) and G* = C~ exp(-S*X*) .  

The unknown constants B*, C*, S* are now determined on matching the vapour suction 
boundary layer to the condensate flow at the interface. To achieve this the liquid phase expansion 
must be of the form: 

(1) 
J = F + O  , g = G +  , h = H + O  , 

(37) 

together with similar expansions for p,/~, cp and K. The zeroth-order functions F etc. now 
satisfy the system of differential equations (5) with f replaced by F etc. 

The boundary conditions at the interface now become 

F(1)=F~(O)=B*,  G(1)=G*(O)=C*,  H ( 1 ) = - S * ,  } (38) 
~F*'(0) = F'(1), ~G*'(0) = G'(1) and )~O'(1) = - ~H(1), 

from which C*, B* and S* may be eliminated. Consequently in the limit as 2--+ oe the boundary 
conditions are : 

F = H = O = 0 ,  G = I  at x---0 ; ] 
(39) 

0 = 1, F'= ~FH, G'= ~GH, ) ~ 0 ' = - ~ H  a t  x = 1 .  

The solution of (5) subject to (39), with the full variable fluid properties, has been found 
numerically for steam-water condensation. These new results are not listed as they are identical 
(to three significant figures) with those in Table 1. Hence, the thick film approximation is in 
precise agreement with the full numerical solutions throughout the range 0< T,~< 90~ 
The real advantage gained is the elimination of the vapour phase flow equations. 

The remaining question to be resolved is the limiting form of the thick film approximation 
as Z~0. Clearly these equations will become invalid since S*~0 with Z~0. This situation is 
already covered by the thin film approximation. 

The behaviour for small )~ of the zeroth-order condensate functions is found to be 

~-=Z�88 H = z §  F = z f ,  G = I + z G ,  O---0. (40) 

On substituting these into (5) (with J' replaced by F etc.) and (39) the equations governing f etc. 
are as follows: 

f,)' ] + = Z [ ~ ) z ( f 2 - 2 0 ) + ~ l ~ ) f ' ] - X 2 0 2 ~ )  2 , 

(41) 
t 

The appropriate boundary conditions are: 

f(0) -- 0(0) =/~(0) = 0(0) = 0, 0(1) = 1, 0' (1) = -c}/~(1) 
(42) 

f'(1) = Zq~/~(1)f(1), O (1) = ~fi(1)(1 +;g0(1)). 1 

To find the solution of this set of equations (41) and (42) for small X the variables are expanded 
as follows : 
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~l(X) = ho("c)q- Zhl('C)q-O(z2), f (x)  = Jo('C) + ZJl ( 'c)+ O(Z 2) ' /  

g(X) go('C)-Jr-zgl('C)+O(z2), 4 = ~b~ -- ] (43) 

and O(x)= r + )~Ol(z)+ Z2Oz(z)+O(zS), 

where ~ is the independent variable, 0 < z - 1. Expansions are also required for p, c~, ~ and K. 
However to avoid algebraic complexity it is informative to introduce a model fluid for the 
condensate with properties: 

P=Ps,  cp=cps, K=Kw+(Ks-K~, )O,  1 1 ( 1  s 1 )  - + 0 (44) 

It is relatively easy to show that the zeroth-order functions are then governed by the system 
of equations : 

E2 Ks   oKs,,t' 
+ ~b~=0,  E~--h'o+2OoJo=O, 

Ko [#sKo~'~ 
(45) 

} K o o { g ~ o  9; - 2q$~Jo = 0 ,  

subject to the boundary conditions 

Jo(0) = go(0) = h0(0)= 0,  J ; ( 1 ) =  0 ,  q$oho(1)= - E  and g;(1) = - 1 .  (46) 

Here the dash now denotes differentiation with respect to "c and E is a constant given by: 

f l Ko (K s + Kw ) 
E = dz = (47) 

o ~ 2Ks 

A solution of these equations, see Poots and Miles [5], yields the following formulae for the 
characteristics : 

(3~@) �88 C M R e � 8 9  E 
= ~ + . . . .  2re - ~ + . . . .  Nu Re -~ = E/q~ + ... .  (48) 

where 

ep = 6 + 29 - ~  + 20 + + 
\ K J  \ K J  

K,,, 
+/J~ 1 9 + 7 6 Kw (Kw~ 2 (~ss )}s ) l  a /G ~ + 85 \ K J  + 30 . (49) 

The information predicted by these, together with (df/dz)~= o, (dg/dz)~= o and (dh/dz)~ = o 
are given in Table 3. It is evident that the heat transfer and torque are in good agreement with 
the exact numerical solutions. This fortuitious agreement is due to algebraic cancellation of 
the combined errors in the zeroth-order functions. Thus it is desirable to examine the next 
approximation. 

The first-order functions satisfy the equations 

TABLE 3 

Zerothordercontributions(48) 

T,, ~ C 0' (0) f '  (0) g' (0) ~b C M Re~/2~ Nu Re- -~ 

0 1.120 0.0974 -0.0307 0.786 0.247 1.149 
20 1.070 0 .143 -0.0454 0.714 0.227 1.315 
40 1.039 0 .173 -0.0537 0.635 0.196 1.159 
60 1.018 0.181 -0.0510 0.548 0.154 1.792 
80 1.007 0 .155  -0.0339 0.441 0.0969 2.250 
90 1.002 0 .118 -0.0192 0.364 0.0591 2.743 
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Ks 
E Koo h'~ = -2r i - 2 ( a , J o ,  

t E2 Koo k/l~Ko KoL~sKo j = 

K~ 
- 2@~176176 Koo ~~176  

E2 Koo L,u~Ko Koo Ckt~K0 

= 2L r +44oq~lJ0+2q~gJ0Oo+E Ks 4oh00;, 
Ko 

I0 K i T =  p~4,oh0 ; 
E '~ + KoJ 

the boundary conditions are: 

.Jl (0)= g l (0)=  hi (0)= 01(0)= 01(1) = 0,  ) 
Ef;  (1) = 4) o ho(1)Jo(1), EO' 1 (1) - - - - -  - -  q~o hi (1) -  q51 ho(1 ) ,} (51) 

) 
Eg' 1 (1) = - EO'I (1) ~- go(i) q~oho(1) �9 

Analytical solution of this set is straight forward but laborious and gives unwieldy formulae 
for the characteristics. These will not be given but instead actual numerical results are listed 
in Table 4 for steam-water condensation. It can be seen that when T,~ > 40~ inclusion of the 
first-order terms leads to improved results but as T,~ approaches 0~ odd deviations appear. 
These are due to the marked non-linearity in/ t  and K, and the neglect of density variation, 
all of which combine to distort the exact solution in the vicinity of T,~=0~ 

TABLE 4 

Zeroth and first order contributions 

T,v ~ 0'(0) f '  (0) g' (0) q5 C M Re~-/2~: Nu Re -*  

0 1.136 0.0924 -0.0277 0.806 0.218 1.137 
20 1.084 0.136 -0.0414 &732 0.202 1.300 
40 1.049 0.166 -0.0497 0.650 0.178 1.500 
60 1.025 0. t75 -0.0481 0.559 0.143 1.770 
80 1.010 0.151 -0.0329 0.447 0.0928 2.232 
90 1.004 0.117 -0.0189 0.366 0.0578 2.731 

Returning briefly to the discussion of the effect of the interfacial shear on the solution, the 
factor of 2 which appears in the numerical solution is clearly manifested in these new ap- 
proximations. For if a stress-free interface condition is assumed the zeroth-order contribution 
to the moment coefficient is CMRe~/2~ = gE/e v as compared with the result given in (48). 

Finally it is of interest to examine the range of applicability of the thick film expansion in 
the region A T ~  0~ where the thin-film expansion is valid. In the case steam-water conden- 
sation the zeroth-order contribution (48) gives cb,, , �89176 ~. For A T = l ,  10 -2, 10-5~ 
this yields ~b=0.200, 0.0632 and 0.0112 which are in excellent agreement with computed 
exact values ~b = 0.210, 0.0624 and 0.0104 respectively. Thus the region of validity of the thick 
film expansion extends to the outer region of the thin film expansion. Indeed for all practical 
purposes the formulae (48) are to be recommended, 
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3. Conclusions 

The mechanism of laminar film condensation on a rotating disk is described completely by 
the analytical formulae for the thin and thick film approximations. 

It is also possible to infer that the new analytical formulae presented are in better agreement 
with experiment than those proposed by Sparrow and Gregg [7]. There, the constant property 
analysis gives Nu/Re ~ = (2/3X) ~ which yields results 30 per cent higher than experimental 
values. The result obtained here is Nu/Re ~ = ep(2/3)0 ~, where in the case of steam-water 
condensation ep takes values between 0.73 and 1 for 0< T,~< 100~ 
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